The orphan response regulator DigR is required for synthesis of extracellular matrix fibrils in Myxococcus xanthus.

نویسندگان

  • Martin Overgaard
  • Sigrun Wegener-Feldbrügge
  • Lotte Søgaard-Andersen
چکیده

In Myxococcus xanthus, two-component systems have crucial roles in regulating motility behavior and development. Here we describe an orphan response regulator, consisting of an N-terminal receiver domain and a C-terminal DNA binding domain, which is required for A and type IV pilus-dependent gliding motility. Genetic evidence suggests that phosphorylation of the conserved, phosphorylatable aspartate residue in the receiver domain is required for DigR activity. Consistent with the defect in type IV pilus-dependent motility, a digR mutant is slightly reduced in type IV pilus biosynthesis, and the composition of the extracellular matrix fibrils is abnormal, with an increased content of polysaccharides and decreased accumulation of the FibA metalloprotease. By using genome-wide transcriptional profiling, 118 genes were identified that are directly or indirectly regulated by DigR. These 118 genes include only 2, agmQ and cheY4, previously implicated in A and type IV pilus-dependent motility, respectively. In silico analyses showed that 36% of the differentially expressed genes are likely to encode exported proteins. Moreover, four genes encoding homologs of extracytoplasmic function (ECF) sigma factors, which typically control aspects of cell envelope homeostasis, are differentially expressed in a digR mutant. We suggest that the DigR response regulator has an important function in cell envelope homeostasis and that the motility defects in a digR mutant are instigated by the abnormal cell envelope and abnormal expression of agmQ and cheY4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus xanthus

In Myxococcus xanthus the extracellular matrix is essential for type IV pili-dependent motility and starvation-induced fruiting body formation. Proteins of two-component systems including the orphan DNA binding response regulator DigR are essential in regulating the composition of the extracellular matrix. We identify the orphan hybrid histidine kinase SgmT as the partner kinase of DigR. In add...

متن کامل

Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility.

Myxococcus xanthus social (S) gliding motility has been previously reported by us to require the chemotaxis homologues encoded by the dif genes. In addition, two cell surface structures, type IV pili and extracellular matrix fibrils, are also critical to M. xanthus S motility. We have demonstrated here that M. xanthus dif genes are required for the biogenesis of fibrils but not for that of type...

متن کامل

Integral proteins of the extracellular matrix fibrils of Myxococcus xanthus.

The extracellular matrix fibrils of Myxococcus xanthus are mediators of cell-cell cohesion and as such are required for the maintenance of the social lifestyle characteristic of these prokaryotes. The fibrils have also been implicated as factors involved in contact-mediated cell interactions and in signal exchange. The fibrils are extracellular carbohydrate structures with associated proteins. ...

متن کامل

A chaperone in the HSP70 family controls production of extracellular fibrils in Myxococcus xanthus.

Three independent Tn5-lac insertions in the S1 locus of Myxococcus xanthus inactivate the sglK gene, which is nonessential for growth but required for social motility and multicellular development. The sequence of sglK reveals that it encodes a homologue of the chaperone HSP70 (DnaK). The sglK gene is cotranscribed with the upstream grpS gene, which encodes a GrpE homologue. Unlike sglK, grpS i...

متن کامل

Isolated fibrils rescue cohesion and development in the Dsp mutant of Myxococcus xanthus.

Extracellular fibrils are involved in cell cohesion and cell development in Myxococcus xanthus. One group of social motility mutants, Dsp, is unable to produce extracellular fibrils; these mutants also lose the abilities to cohere and to develop. Extracellular fibrils isolated from vegetative wild-type cells and added to Dsp cells fully restored the abilities of these cells to cohere and to und...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 188 12  شماره 

صفحات  -

تاریخ انتشار 2006